
Activity Recognition in Temporally Untrimmed Videos

Bryan Anenberg
Stanford University

anenberg@stanford.edu

Norman Yu
Stanford University

normanyu@stanford.edu

Abstract

We investigate strategies to apply Convolutional Neu-
ral Networks (CNNs) to recognize activities in temporally
untrimmed videos. We consider techniques to segment a
video into scenes in order to filter frames relevant to the ac-
tivity from the background and irrelevant frames. We eval-
uate CNNs trained on frames sampled from the videos and
present an approach towards implementing the two-stream
CNN architecture outlined in [8]. The system is trained
and evaluated on the THUMOS Challenge 2014 data set,
which is comprised of the UCF-101 and additional tempo-
rally untrimmed videos.

1. Introduction

The goal of the project is to develop an algorithm for au-
tomatically recognizing a large number of action categories
from videos. An action can be either a simple atomic move-
ment performed by a single person or a complex scenario
involving multiple people. The algorithm should recognize
human actions from videos in a realistic setting. Videos of a
given action class could involve different backgrounds, dif-
ferent actors, and be captured from different camera view-
points. This project addresses the task of recognizing hu-
man activities in temporally untrimmed videos, where the
action of interest may occur at any time in the video.

The overall plan to approach the problem is to first ex-
tract proposals in the form of time ranges about where the
activity may occur in the video. With this information,
our system decomposes the video into spatial and tempo-
ral components and trains a separate Convolutional Neu-
ral Network (CNN) on either stream. We demonstrate the
performance of different region proposal heuristics, differ-
ent frame sampling techniques, and the spatial vs. temporal
streams.

Figure 1: Sample activity classes from the UCF 101 data set

2. Related Work

2.1. Review of Previous Work

2.1.1 Feature Based Approaches

The most popular state-of-the-art video classification sys-
tems rely on well designed features. The typical pipeline
involves feature extraction, feature encoding, and then clas-
sification. For instance, [10] uses Improved Trajectory Fea-
tures to densely samples feature points in each frame and
tracks their motion using optical flow. Feature descriptors
such as trajectory, histogram of oriented gradient (HOG),
histogram of optical flow (HOF), and motion boundary his-
tograms (MBH) are computed along the trajectories of fea-
ture points to capture shape, appearance, and motion infor-
mation. The features are then encoded into a Bag of Fea-
tures representation using a learned k-means dictionary. A
classifier such as an SVM is trained on the quantized fea-
tures to distinguish the video classes.

1



2.1.2 Convolutional Neural Networks for Activity
Recognition in Video

Recently [8] and [4] demonstrated impressive performance
classifying activities in videos purely using CNNs. [4]
treats every video as a bag of short, fixed-sized clips and
extends the connectivity of the network across frames in an
attempt to let the network discover spatio-temporal features.
[4] evaluates various CNN architectures such as the Slow
Fusion model, concludes that the single-frame architecture
already exhibits strong performance, and demonstrates that
the features learned no teh large Sports-1M data set are
generic and generalize to video classification on the UCF-
101 data set.

[8] introduces an architecture based on two separate
recognition streams (spatial and temporal) which are com-
bined by either averaging or training a multi-class SVM on
the L2-normalized softmax scores as features. The spatial
stream performs action recognition from still video frames,
while the temporal stream recognizes actions from motion
in the form of dense optical flow. [8] demonstrates that it
is useful to pre-train the spatial stream CNN on ImageNet
[7] since training on the UCF-101 data set alone leads to
overfitting, and that a CNN trained on static images video
frames alone is fairly competitive. The input to the tempo-
ral stream architecture is a stack of optical flow dX and dY
channels of L consecutive frames to form a total of 2L in-
put channels. The key conclusion is that the CNN trained
on stacked optical flow images is highly beneficial as it pro-
vides the network with more long-term motion information.
Further, the temporal and spatial recognition streams are
complementary as their fusion significantly improves either
stream’s individual performance to achieve an overall 87%
accuracy.

2.2. Contribution of this Paper

The CNN systems for activity recognition described in
[8; 4] do not exceed the performance of the best feature
baselines. This paper does not present a algorithm to beat
the state-of-the-art systems. Rather, this paper attempts to
extend the CNNs presented in [8; 4] to classify temporally
untrimmed videos. This paper implements a CNN to per-
form activity recognition, and explores pre-processing tech-
niques to extend the system to classify untrimmed videos

3. Approach
The goal of the paper is to present a strategy for applying

activity recognition to temporally untrimmed videos. Re-
lying on the evidence from [8] and [4], we pre-train the
weights of our CNN architecture on ImageNet [7]. We first
establish the baseline performance of a system trained and
tested on the UCF-101 temporally trimmed videos. We then
extend the experiment to activity recognition on the tempo-

rally untrimmed videos without any pre-processing.Next,
we evaluate the performance of two different temporal
scene proposal heuristics. In parallel, we design an CNN
trained on the stacked optical flow frames.

3.1. Scene Proposal Pre-processing

3.1.1 Shot Boundary Detection

A video is usually composed of hundreds of disjoint shots
concatenated together into a single file. A shot is a set of
continuous frames captured in a single sequence by one
camera. Shot boundary detection scores the potential for a
boundary between two adjacent frames using such metrics
as the chi-squared distance between the color histograms of
frames. The algorithm predicts the existence of a boundary
between frames if the score is about a set threshold. This
project relies on the Shotdetect [6] to perform this analy-
sis. Given the frame ids of the scene boundaries, we apply
a heuristic with the goal of eliminating scenes which have a
low likelihood of containing an activity. Through observa-
tion, we noticed that short scenes usually correspond to ad-
vertisements or introductions. As a first attempt we decided
to retain video frames that belong to scenes of longer dura-
tion than the median length scene. This approach ignores
the fact that long scenes are likely to portray imagery of the
surrounding environment and background, rather than the
actions of interest. Thus, we consider the performance of
the CNN when trained on frames sampled from scenes of
length 0.2D to 0.8D where D is the duration of the longest
scene.

It would be useful to consider the distribution of scene
lengths in every video to understand the what percentage of
frames are removes using the scene selection heuristic. As
illustrated in Figure 2(a) and (b) a scene of an relevant ac-
tivity may be segmented due to a different camera position.
As a result the average length of a relevant action frame is
shorter. Furthermore, transitions between scenes and adver-
tisements are of different durations.

3.1.2 Tubelets

During this project we attempted to extract accurate spatio-
temporal activity proposals using the ”tubelet” algorithm
presented in [2]. The algorithm returns a sequence of
bounding box predictions across consecutive frames, which
are referred to as ”tubelets.” A tubelet describes a sub-
volume with a high likelihood of encompassing the action
of interest. The idea was to trim the set of tubelet proposals
down to a subset of proposals with the greatest likelihood
of containing the activity, and then pool the CNN activity
predictions for frames belonging to these proposal regions.
Since each tubelet provides a series of bounding box pre-
dictions, we could dynamically crop and re-size each frame
in the video to a constant size to serve as input for the CNN.

2



(a) (b)

(c) (d)

Figure 2: Shot Boundary Detection: (a), (b): a pair of
frames immediately before and after a shot boundary. (c): a
frame in the same scene as frame (b). (d): The first frame
of the next scene.

Unfortunately even when using the most aggressive tubelet
extraction settings, the tubelets required on the order of 5
minutes of processing for 100 frame videos and over an
hour for videos with beyond 200 frames. As a result, we
do not evaluate the CNN performance using the tubelet pre-
dictions.

3.2. Spatial Stream CNN

The spatial stream CNN operates on individual video
frames or sequences of frames, where the RGB channels
of each frame are stacked to form a 3L dimensional input
channel. Since the frames are 224x244 in size, the result-
ing input dimensions are 224x224x3L. Through the exper-
iments we found that static image features alone provide
enough information to train a competitive activity recogni-
tion system.

All of the spatial stream CNN experiments rely on
the same CNN architecture: We use shorthand notation
C(d, f, s), d filters of spatial size f×f , applied to the input
with stride s. All pooling layers P(k,s) where k=kernel size,
s=stride use max-pooling. FC(n) is a fully connected layer
with n nodes. All normalization layers N are described in
Krizhevsky et al [5] and use the same parameters: n = 5,
α = 10−4, and β = 0.75.

Inputs of size
224× 224× 3

C(96, 11, 4), RELU,P (3, 2)

C(256, 5, 1), RELU

P (3, 2), N

C(384, 3, 1), RELU

C(384, 3, 1), RELU

C(256, 3, 1), RELU,P (3, 2)

FC(4096), RELU,Dropout

FC(4096), RELU,Dropout

FC(101), Softmax

The experiment section elaborates on the variety of ex-
periments we conducted using the spatial stream architec-
ture.

3.3. Optical Flow CNN

Encouraged by the positive results of [8], we developed
a CNN trained on optical flow images. [8] reported high
test accuracies achieved by training a CNN on single-frame
optical flow and stacking up to 10 consecutive frames. As
a first step we decided to extract the optical flow between a
pair of frames 30 apart. Extracting the optical flow between
frames 30 apart ensures that the average displacement vec-
tor field is large. However, since the video frame rate is
24 fps, computing the optical flow between two frames 30
apart could yield inconsistent results for activities with lots
of fast movement.

It is important to consider that camera movement could
contribute to the optical flow displacement between a pair
of frames. This problem is even more likely to occur if the
two optical flow frames are not consecutive. We also con-
sider the possibility of pairs of optical flow frames existing
in different scenes as segmented by shot detect. However
unlikely, if the optical flow bridges between shot detection
boundaries, then the optical flow would be exceedingly ex-
aggerated. Thus, we prevent pairs of optical flow frames
from existing in separate scenes.

One approach to account for camera motion between a
pair of frames is to subtract the mean dX and dY from
either optical flow displacement field d. Although we did
not subtract the mean displacement field, we did take the
absolute value of the raw optical flow displacement field.
Applying the absolute value to the optical flow implicitly
assumes that movement in either direction in the horizontal
is equivalent and movement in either direction in the ver-
tical is equivalent. This assumption is valid for some ac-
tivities such as swimming, but not for others such as rock
climbing.

The optical flow was precomputed before training the
CNN using the GPU implementation of [9] from OpenCV.
To avoid storing the optical flow displacement fields as
floats, the horizontal and vertical components are linearly
rescaled to a [0,255] range and compressed using JPEG.

3



Figure 3: Optical Flow: The above frames illustrate the horizontal and vertical components of the optical flow between a pair
of frames 30 frames apart.

4. Experiment
4.1. Dataset

For data, we use

• THUMOS Challenge 2014 data [3]: The THUMOS
challenge provides 4 separate video data sets: (train-
ing, validation, background, and testing).

• Training: The training data set is the full UCF101 ac-
tion data set. It consists of 101 human action cate-
gories with 13,320 videos in total. Each category has
more than 100 video clips, all of which are temporally

trimmed.

• Validation: The validation data set contains 1,000
videos. In general, there is one primary action class
shown in each video; however, some videos may in-
clude one or more instances from other action classes.
Additionally, these videos are not temporally trimmed;
the relevant action is not guaranteed to occur through-
out the entire video.

• Background: The background data set contains 2,500
videos that are verified to make sure they do not in-
clude an instance of any of the 101 action classes.

4



Each video is relevant to one of the action classes. For
instance, the background videos related to the action
class Basketball Dunk may show the basketball court
when the game is not being played.

• Test: The test data set contains 1,574 temporally
untrimmed videos are provided as the test data. Some
videos may contain one or multiple instances from one
or multiple action classes, and some videos may not
include any actions from the 101 classes. A significant
portion of the video may not include any particular ac-
tion, and multiple instances may occur at different time
stamps within the video.

4.2. Evaluation

We will use Interpolated Average Precision (AP) as the
official measure for evaluating the results on each action
class. Given a descending-score-rank of videos for the test
class c, the AP(c) is computed as:

AP (c) =

∑n
k=1 P (k) · rel(k)∑n

k=1 rel(k)

where n is the total number videos, P (k) is the precision at
cut-off k of the list, rel(k) is an indicator function equaling
to 1 if the video ranked k is a true positive, and to zero other-
wise. The denominator is the total number of true positives
in the list.

Mean Average Precision (mAP) is the official measure
used to evaluate the performance of one run, which is com-
puted as:

mAP =
1

C

C∑
i=1

AP (c)

We will also report the average accuracy.

4.3. Experimental Results

4.3.1 Baseline on UCF-101 data set exclusively

We establish the baseline performance of pre-training the
CNN on ImageNet and fine-tuning on a portion of the UCF-
101 data set. The fine-tuning data set is comprised of the
first frame from each UCF-101 video. This process yields
61.7% mAP.

The UCF videos are trimmed, therefore we can be con-
fident that the frames from which we are sampling from ac-
tually correspond to the labeled action. Using untrimmed
videos is much more challenging - only the whole video is
labeled rather than the individual frames. So there is a much
greater chance that the frame chosen from random sampling
will correspond to noise.

4.3.2 Baseline: fine tune on random sample of (Train-
Val)

As an alternate approach, we attempted to also sample 5
frames at random and 100 frames at random from the the
UCF101 and THUMOS videos. In this case, the CNN is
trained on both the UCF-101 and Validation (TrainVal) data
sets and tested on the Test data set. Sampling 5 frames
at random per video yielded a 31.9% mAP. Sampling 100
frames at random yielded 37.0% mAP. Increasing the sam-
pling rate increased the model performance.

4.3.3 Fine tune on (TrainVal) using shot detection

We used shot detection to identify points in the video where
the scene changes. Thus every scene in the video has a
corresponding length. Our hypothesis was that very short
scenes did not correspond to meaningful events in the video.

Our first method for shot detection was to only sample
on scenes whose lengths were greater than the median scene
length. For 5 frames, this yielded 32.7% mAP, which is an
improvement over selecting 5 frames at random. For 100
frames, the shot selection method yielded a similar result
(37.0 % mAP).

This suggests that shot detection can help if we can only
sample a few frames, and that the benefit saturates when we
have the ability to sample from many frames.

We also experiments with other heuristics for detecting
significant scenes - for instance, we considered only sam-
pling from scenes who lengths were between the 20th and
80th percentile. The intuition for removing the longest
scenes came from observing a few videos whose longest
scenes were mostly idle. This performed slightly worse than
just selecting only those scenes whose length were greater
than the median.

Shot detection is a potentially interesting method to ap-
ply if we develop a better heuristic for detecting the critical
scenes.

4.3.4 Relative performance when tuning on TrainVal
data set

Table 1 presents mAP performance of a CNN tested on tem-
porally untrimmed videos. The CNNs were pre-trained on
ImageNet followed by (i) fine-tuning on the TrainVal or (ii)
keeping the pre-trained weights fixed and only training the
last fully connected layer. In either case, we experiment
with drop out of 0.5 and 0.9 after the fully connected layers.
Although we interrupted training pre-maturely, the results
indicate that only training the final fully connected layer
yields marginally better performance.

5



Training setting Dropout Ratio
0.5 0.9

fine-tuning 0.22450 0.23529
last layer 0.2397 0.24061

Table 1: Using only 20k iterations

Figure 5: Accuracy plots after fine-tuning with dropout 0.8
and shot detection: Shot Detect 5 with Dropout 0.8: After
pre-training on ImageNet, the CNN exhibits severe overfit-
ting on the TrainVal data set. The training and testing data
set consists of 5 sampled at random using the shot detection
heuristic. Increasing the regularization strength, decreasing
the model complexity, and increasing drop-out could po-
tentially decrease the margin between training and testing
accuracy.

4.3.5 Optical Flow

For this experiment, from am pair of 3x224x224 frames in a
video separated by 30 frames, we computed the optical flow
in the x and y direction. Each optical flow is 1×224×224.
We then trained the network by stacking the optical flow
images to create a 2 × 224 × 224 image. the pixel values
for the optical flow channels were rescaled to have values
between 0 and 255.

Training on the optical flow images only yielded 7.3%
mAP, which is better than chance, but still worse than train-
ing on actual frames.

A potential issue with training the optical flow is that
the method does not account for the motion of the cam-
era. It would be useful to consider subtracting the mean
displacement from the optical flow frames to mitigate the
camera motion to some degree. In the future we would like
to capture the incremental motion between multiple frames
by stacking the channels of consecutive optical flow frames.

If we had more time, we would consider augmenting the
optical flow with the original images to try to enhance our
results since it does seem that optical flow does have some
predictive power.

4.3.6 Stacking Images

Another approach we considered was stacking images. We
would choose K frames in order from a particular video
and create a (3 ·K) × 224 × 224 image object. This
method would have the benefits of optical flow as the net-
work should be able to detect the change in the scene over
time, which is what we wanted from optical flow. More-
over, this method would not lose the original information
contained in the image.

5. Conclusion and Directions for Improvement

We proposed strategies to extend activity recognition to
untrimmed videos and evaluated the performance of sepa-
rate temporal and spatial stream Convolutional Neural Net-
works. We considered how to accurately sample relevant
frames from videos and how to format these frames as in-
put to a CNN. Although promising in theory, stacking the
channels of consecutive frames, and computing the optical
flow between non-adjacent frames did not lead to significant
improvements in performance.

We learned the challenges of trying to classify
untrimmed videos, as well as different methods to extract
the most critical information from the videos.

We’d like to experiment more with training different
network architectures and with investigating heuristics for
sampling the most from the frames that are most represen-
tative of the action occurring in the video. We would like
to extend the optical flow analysis to stacked optical flow
channels from consecutive frames. Further, we would like
to investigate alternative techniques other than subtracting
the mean optical flow displacement to normalize for cam-
era motion between frames. For example, rather than using
optical flow, it would be interesting to explicitly use the w-
flow described in [1] as input to the CNN. W-flow assumes
an affine model to accurately subtract the dominant motion,
described by the affine flow vector, from the optical flow
vector. The w-flow exaggerates the optical flow of the ac-
tors in the foreground and depresses the camera motion.

References
[1] M. Jain, H. Jegou, and P. Bouthemy. Better exploiting motion

for better action recognition. In Computer Vision and Pat-
tern Recognition (CVPR), 2013 IEEE Conference on, pages
2555–2562, June 2013.

[2] M. Jain, J. Van Gemert, H. Jégou, P. Bouthemy, and
C. Snoek. Action localization with tubelets from motion. In

6



CVPR - International Conference on Computer Vision and
Pattern Recognition, Columbus, United States, June 2014.

[3] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Ac-
tion recognition with a large number of classes. http:
//crcv.ucf.edu/THUMOS14/, 2014.

[4] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, 2014.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, edi-
tors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[6] J. Mathe. Shotdetect. https://github.com/
johmathe/Shotdetect, 2013.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge, 2014.

[8] K. Simonyan and A. Zisserman. Two-stream convolu-
tional networks for action recognition in videos. CoRR,
abs/1406.2199, 2014.

[9] N. P. T.Brox, A. Bruhn and J. Weickert. High accuracy opti-
cal flow estimation based on theory of warping. pages 25–36,
2004.

[10] H. Wang and C. Schmid. Action recognition with improved
trajectories. In IEEE International Conference on Computer
Vision, Sydney, Australia, 2013.

7

http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/
https://github.com/johmathe/Shotdetect
https://github.com/johmathe/Shotdetect


Figure 4: Shot Detect 100 Trial 2: Average Precision by Class

8


