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Abstract

We present a system that directly learns a compact fea-
ture representation for fashion photographs taken in real-
world environments. The learned representation is shown
to encode an understanding of fashion style despite not di-
rectly being trained to classify between fashion styles. The
representation is learned through training on weakly la-
beled data from fashion photographs posted to online so-
cial websites. The system learns a style similarity metric by
comparing whether pairs of images share attributes – col-
ors and garments. In particular, training is performed using
triplets that consist of an anchor image, a dissimilar image,
and a similar image. The performance of the learned em-
bedding is thoroughly evaluated and is shown to be generic
in that it can be used on tasks it was not directly trained for,
such as fashion style classification.

1. Introduction
Clothing serves for much more than covering and pro-

tection. The clothing that we wear provides a visual signal
that we can use to make predictions about the person. The
style of ones clothing reflects their personality, their inter-
ests, their occupation, and even their socioeconomic status.

The Internet is full of images of people wearing different
styles of clothing. In particular, there exist websites such as
http://www.chictopia.com/ and Instagram that contain thou-
sands of images of fashion photography. These sources con-
tain images across a wide variety of fashion styles. Fashion
posts often are annotated with a variety of tags describing
the style, season, garment, or event. Posts also often contain
comments and counters for the number of likes and shares.

In this paper we present a system that directly learns a
mapping from fashion photographs taken in real-world en-
vironments to a compact Euclidian space where distances
correspond to a measure of clothing style similarity. The
method uses a deep convolutional neural network optimized
to learn the feature embedding and similarity metric space
directly. Training is performed using triplets that consist
of an anchor image, a dissimilar image, and a similar im-

age. Images are weakly labeled by the presence or ab-
sence of clothing attribute such as color and clothing type.
The labels are noisy and not guaranteed to be exhaustive.
The image triplet is selected by comparing the clothing at-
tributes that have in common. The network is also jointly
trained to perform clothing attribute prediction, which en-
courages the network to learn features that discriminate be-
tween imaged based on the clothing attributes rather than on
the background or the person. Another goal of this paper is
to demonstrate that the learned compact features are generic
and powerful enough to be useful for other clothing related
tasks such as attribute prediction, style classification, and
even fashionabilty prediction.

An example photograph that we could consider to train
the system is shown here 1. The photo contains a sin-
gle model and is weakly labeled with a variety of meta-
data. For example, some tags describe the style such as
”Chic”, ”Everyday,” or ”Fall,” the garment color such as
”red” or ”black”, and the garment type such as ”sunglasses,”
”boots”, or ”watch”.

Figure 1: An example post from the Fashion144k dataset.
The post contains at least a single image with additional
metadata including tags and comments.

2. Previous work
There is a long history of prior work related to cloth-

ing recognition [8] [1] [15], attribute prediction [3] [9] [4],
clothing item retrieval, and clothing segmentation. This
area of research is especially interesting because of the
many real-world consumer applications.
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Clothing recognition aims to detect and identify articles
of clothing. Often clothing can be described with varying
levels of precision. For example, clothing can be coarsely
described by categories such as ”dress”, ”pants”, ”suit”,
”shoes”, and ”sweater”. Fine-grain description of clothing
involves identifying attributes such as color, texture, pat-
tern, fabric, shape, or style. The complete dictionary of
clothing attributes is very large. Often a single article of
clothing can be describe by many clothing attributes. For
example, [1] performs clothing recognition by first classi-
fying the image as one of 15 common clothing types and
then identifying the set of attributes form a collection of 78
attributes that are present in the image. The complete de-
scription of the clothing can be given by the union of the
type and attribute, such as ”blue dress.” [3] generates a list
of attributes for clothes worn by humans in unconstrained
images. His model first estimates the person’s pose, then
predicts each attribute using individual attribute classifiers
relying on complementary features, and makes a final pre-
diction by leveraging a CRF to enforce the Rules of Style
constraints across the preliminary attribute predictions.

Another example of clothing attribute prediction is [9] in
which they preform discriminative classification between 5
style categories: hipster, hipster, bohemian, pinup, preppy,
and goth.

However, as pointed out in [17], clothing recognition al-
gorithms are especially difficult to operate in practice due
to three primary challenges. First, clothes often have large
variation in style, texture, and cut. Second, clothes are of-
ten subject to deformation and occlusion. Third, clothing
images often exhibit sever variations when they are taken
under different scenarios such as selfies vs. online shopping
photos.

Many prior works address these challenges through
transfer learning by first pre-training on a large well anno-
tated related dataset and fine-tuning on the well annotated
clothing dataset. [4] presents a domain adaptation tech-
nique to leverage a model trained on a large scale shop-
ping dataset annotated with fine-grain clothing attributes to
perform clothing attribute recognition in real-world surveil-
lance videos. The authors observe that there exist lots of
structured descriptions of clothes on e-Commerce websites
such as Amazon.com, but very fewer cleanly annotated
datasets of people wearing clothes in the natural environ-
ment. Images of clothes drawn from e-Commerce websites
have ideal lighting, standard pose, high resolution, and good
quality whereas images of clothes worn in the natural world
are subject to deformation, occlusion, and all the other chal-
lenges recounted above.

Other authors approach the problem of the scarcity of
well annotated real-world clothing images by adapting their
model to train on images with mixed quality labels. The
authors of [15] assert that training a model from scratch

with limited clean labels and an abundance of noisy labels
is better than only fine-tuning a pre-trained network on the
clean labels. They present a system that layers a probabilis-
tic graphical model on top of a CNN to perform clothing
classification.

Many of these issues could be addressed through the in-
troduction of large scaled annotated datasets. However, un-
til recently there were no large scale datasets that addressed
all of the above challenges with rich annotations. The large-
scale fashion (DeepFashion) dataset introduced in [17] is
perhaps the most diverse and well annotated fashion dataset.

The list of datasets related to clothing and fashion that I
have encountered are as follows:

• Hipster Wars [9]: The hipster wars dataset contains
1893 photos modeling five clothing style categories:
hipster, hipster, bohemian, pinup, preppy, and goth.

• Large-scale Fashion (DeepFashion) Database [17]:
The DeepFashion dataset contains 800,000 diverse
fashion images ranging from well-posed shop images
to unconstrained consumer photos. Each image in this
dataset is labeled with 50 categories, 1,000 descriptive
attributes, bounding box and clothing landmarks.

• Apparel classification with Style dataset [1]: This
dataset contains over 80,000 images across 15 classes.

• Clothing1M [15]: This dataset contains 1,000,000 im-
ages from online shopping websites. The majority of
the images are assigned a noisy label according to key-
words in the surrounding text (only 72,409 images are
considered clean).

• Fashion 144k [12]: This dataset contains 144,169 user
posts with images and their associated metadata.

In Neuroaesthetics of Fashion: Modeling the Perception
of Fashionability [12], the authors aim to predict how fash-
ionable a person looks in a photograph and suggest sub-
tle improvements that the user can make to improve his or
her style. They implement a CRF model that relies on sev-
eral fashionability factors including the clothing attributes,
user characteristics, the surrounding scenery, and the fash-
ionability scores, which is derived from the likes and com-
ments of the post.

In Fashion Style in 128 Floats [13] the author attempts
to directly learn a mapping from fashion photography to
a compact Euclidian space where distances directly corre-
spond to a measure of style similarity. He proposes a multi-
task CNN with a ranking loss on the 128 dimensional fea-
ture embedding to encourage similar images to have small
Euclidian distance and different images to have large Eu-
clidian distance. A classification loss for the task of cloth-
ing attribute prediction is also added. The model is trained
on a filtered subset of the Fashion144k dataset. Fashion
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photos are labeled by the presence or absence of attributes
from a large collection of attributes. The images are weakly
labeled - the labels are noisy and are not guaranteed to con-
tain the full set of attributes that best describe the image.
The work of our paper is directly inspired by [13].

2.1. Neural Networks to Learn Similarity

Optimizing a neural network to learn a similarity met-
ric, rather than indirectly learn the metric as a byproduct
of training a classification network, is an approach that has
been applied to a various tasks such as wide angle match-
ing and facial recognition [6] [16] [11]. Two popular net-
work architectures are the Siamese network and the triplet
network. A Siamese network [2] consists of two neural net-
work towers and a loss function that reflects the similarity
of the two input images. A triplet network [7] consists of
three neural network towers to process three images, an an-
chor image, a similar image, and a dissimilar image. The
triplet loss tries to learn the relative similarity between the
images. The authors of FaceNet [11] successfully employ
a triplet loss to learn a metric space that they use for facial
recognition and clustering. Another approach to learning a
similarity metric space is present in [14]. Here the authors
lift the vector of pairwise distances within the batch to the
matrix of pairwise distance.

2.2. Semantic Embedding

Other interesting works that combine vision and lan-
guage models to learn semantic embeddings include [10]
and [5].

3. Technical Part
The proposed model is heavily inspired by [13] and [11].
The model consists of jointly training a feature embed-

ding network and a classification network. The goal of the
feature embedding network is to directly learn the compact
Euclidian space where distance is measure of fashion style
similarity. This network is trained using image triplets.

The classification network adds additional layers to the
feature embedding network to predict the presence or ab-
sence of clothing attributes in an image.

3.1. Triplet Selection

We use the same methodology as [13] to select triplets.
Each fashion photograph is weakly labeled by a set of at-
tributes or ”tags”. A label vector l = (lt)t∈T for an image
assigns a lt ∈ 0, 1 to each tag t ∈ T . If the tag applies to the
image, the label for the image assigns 1 to the tag.|l| is the
number of tags that label l assigns 1. The similarity func-
tion between labels a and b is defined as the intersection
over union of the label vectors a and b:

r(a, b) =
|a ∧ b|
|a ∨ b|

where ∧ and ∨ operate on the labels as tag-wise AND and
OR respectively.

Triplets are selected by first fixing an anchor image, and
then selecting a similar and dissimilar image to add along
side it to the triplet. The label vectors of the anchor image,
similar image, and dissimilar image are given by y, y+, and
y− respectively. The label vectors are a 3,302 dimensional
binary vector. The similar image I+ is chosen such that
r(y, y+) > τs where τs is a similarity threshold. (In the
experiments this is set to 0.75). The dissimilar image I− is
chosen such that r(y, y−) < τd where τd is the dissimilar
image threshold. (In the experiments this is set to 0.1). The
image triplet is written as (I−, I, I+). An example image
triplet is shown here 2.

Figure 2: An example image triplet used during training.
The images are ordered as dissimilar, anchor, similar image.
The attributes shared between the similar and anchor image
are highlighted in green. Only a single attribute is shared
between the dissimilar and anchor image. R reflects the
intersection over union tag-wise similarity score calculated
between the images. Notice that not all of the attributes
present in each image are displayed in the figure.

In order to ensure fast convergence when training, it is
necessary to partially precompute the image triplets. It
is quite rare for a pair of images to exceed the similarity
threshold. It often requires sampling many pairs of images
before finding a pair whose tag-wise similarity score r ex-
ceeds the similarity threshold. For this reason, the similarity
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score between all
(
N2

)
images is precomputed and those

pairs with similarity score greater than τs are stored. The
triplet is completed at training time by sampling from the
dataset a third image whose similarity score with at least
one of the images in the precomputed similar pair is less
than τd.

3.2. Embedding Loss

We use either the ranking loss of [13] or the triplet loss of
[11]. Both losses operate on the triplet of feature embedding
vectors that we refer to as Tf = (f−, f, f+).

3.2.1 Ranking Loss

As described in [13], the ranking loss lRanking encourages
the normalized distance d+ between the anchor and the sim-
ilar image to be smaller than the distance d− between the
anchor and the dissimilar image.
d− = exp(||f−−f ||2)

exp(||f−−f ||2)+exp(||f+−f ||2)

d+ = exp(||f+−f ||2)
exp(||f−−f ||2)+exp(||f+−f ||2)

lRanking(f, f−, f+) = 0.5
(
(d+)

2 + (1− d−)2
)

=
(d+)

2

3.2.2 Triplet Loss

As described in [11], the triplet loss is a variant of the hinge
loss which encourages the d+ between the anchor and the
similar image to be smaller than the distance d− between
the anchor and the dissimilar image by at least some param-
eter α. α is a tunable parameter, but for our experiments we
left it fixed at α = 0.2.
lTriplet(f, f−, f+) = max(0, ||f+ − f ||22 + α < ||f− −

f ||22)

3.3. Feature Embedding Network

The convolutional neural network to obtain the feature
embedding vector is inspired by [13]. The goal of the fea-
ture embedding network is to learn a compact (128 dimen-
sional) representation of input image. This motivates the
networks relatively shallow depth. Most fashion photogra-
phy has 3 : 4 aspect ratio. The network reflects detail by
expecting a rectangular shaped input image 1.

3.4. Classification Network

The classification network is shallow fully connected
network operating on the output of the feature embedding
network. The objective of the classification network is to
predict the presence or absence of the clothing attributes as-
sociated with the image. Recall that to construct the train-
ing image triplet the tag-wise similarity metric r(a, b) was
computed between image pairs. The label vector used to
compute the similarity metric was 3, 302 dimensional. The
binary vector l is a 123 dimensional subset of the full label

layer kernel size output size
convolution 3× 3 384× 256× 64
convolution 3× 3 384× 256× 64
dropout(25%) 384× 256× 64
max pooling 4× 4 96× 64× 64
batch normalization 96× 64× 64
convolution 3× 3 96× 64× 128
convolution 3× 3 96× 64× 128
dropout(25%) 96× 64× 128
max pooling 4× 4 24× 16× 128
batch normalization 24× 16× 128
convolution 3× 3 24× 16× 256
convolution 3× 3 24× 16× 256
dropout(25%) 24× 16× 256
max pooling 4× 4 6× 4× 256
batch normalization 6× 4× 256
convolution 3× 3 6× 4× 128
fully-connected 128

Table 1: The feature embedding network. The output fea-
ture vector is 128 dimensional.

layer output size
batch normalization 128
fully-connected 128
fully-connected 123

Table 2: The classification network expects a 128 dimen-
sional extracted by the feature embedding network. The
output is a 123 vector of scores across the 123 attribute
classes the network aims to predict.

vector consisting of tags that appear with more frequency.
The classification network is trained with sigmoid cross en-
tropy loss to predict the binary vector l. 2

During training, the classification network is only ap-
plied to the dissimilar image in the image triplet. This is
because the dissimilar image was sampled at random from
the full training dataset, whereas the anchor and similar im-
age are drawn from a smaller precomputed set of similar
images.

4. Experiments
4.1. Datasets

The model was trained on a filtered subset of the
Fashion144k dataset http://hi.cs.waseda.ac.
jp/˜esimo/en/research/fashionability/
which consists of fashion posts gathered from
http://www.chictopia.com/. Images taken
with strong filters, close-ups of objects, or that were
severely cropped were removed [13]. The training split
consisted of 80,554 images. The test split contained 8,948
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images.
The HipsterWars dataset http://www.cs.unc.

edu/˜hadi/hipsterwars/ contains fashion photos
belonging to five style classes: ”Bohemian”, ”Goth”, ”Hip-
ster”, ”Pinup”, and ”Preppy.” This dataset was used to eval-
uate the learned embedding’s performance on the task of
style classification.

4.2. Triplet Selection

Selecting image triplets proved very time intensive. For
this reason we precomputed all possible image pairs whose
tag-wise similarity r(a, b) was greater than the threshold,
0.75. This resulted in 61,951 similar image pairs in the
training split and 832 similar pairs in the test split. The
dissimilar image to complete the image triplet was sampled
at random from the dataset at training time.

4.3. Joint Training

The model was trained jointly with the either the Triplet
or Ranking embedding loss and the classification sigmoid
cross entropy loss. The classification network provided a
monotonically decreasing loss whereas the embedding loss
often was more noisy. This observation could have been due
to the fact that solving the binary attribute prediction prob-
lem is easier (in that there is clear annotation) than learning
a relative ordering between image pairs in the triplet.

The embedding loss and the classification loss are
weighted according to the parameter β, which is tuned in
the experiments.
l = βlclassification + (1− β)lembedding

We decided to pretrain the weights of the embedding net-
work on the classification task by adding a single fully con-
nected layer on top of the embedding network. Pretraining
the weights of the embedding network should help the em-
bedding loss avoid diverging.

4.4. Metrics

To evaluate the quality of the learned representations we
compute a variety of metrics.

4.4.1 Metrics to Evaluate Embedding Quality

The first set of metrics we compute are used to evaluate
the embedding vectors themselves. These metrics were in-
spired by [11]. Given a pair of two images xi and xj , the
squared L2 distance is computed D(xi, xj). The pair is
classified as either ”similar” or ”dissimilar” depending on
the value of D(xi, xj). Image pairs of that are actually sim-
ilar (using the tag-wise similiarity metric r(·, ·)) are denoted
by Psimilar and image pairs that are actually dissimilar are
denoted by Pdissimilar. We define the set of all true accepts
as
TA(d) = {(i, j) ∈ Psimilar,with D(xi, xj) ≤ d}

which are all similar image pairs (i, j) that were classi-
fied correctly according to some threshold d. The false ac-
cepts are defined asthe set of all dissimilar image pairs (i, j)
that were classified as similar according to the threshold d.
FA(d) = {(i, j) ∈ Pdissimilar,with D(xi, xj) ≤ d}
The validation rate V AL(d) and the false accept rate for

a given threshold d are defined as
V AL(d) = |TA(d)|

|Psimilar|

FAR(d) = |FA(d)|
|Pdissimilar|

The threshold d reflects the maximum L2 distance
D(xi, xj) required to classify an image pair xi and xj as
similar.

The threshold d is not chosen arbitrarily, it is learned.
We have both a training and test set of similar and dissimi-
lar images. The false accept rate is computed on the train-
ing dataset across a range of thresholds (in our experiments,
from 0 to 20 in steps of 0.01). The threshold at the targeted
false accept rate (in our experiments we held this fixed at
1 × 10−3) is selected. This threshold is then used to com-
pute the validation rate and false accept rate across the test
set of similar and dissimilar image pairs.

Other metrics we computed included the accuracy, true
positive rate (Recall), and false positive rates.
Recall(d) = |true positives|

|true positives|+|false negatives|

FalsePositiveRate(d) = |false positives|
|false positives|+|true negatives|

Accuracy(d) = |true positives|+|false negatives|
|Psimilar|+Pdissimilar|

These metrics were also computed with respect to a
learned threshold d. This threshold is found in a similar way
to before by computing the accuracy at various threshold
values (in our experiments, from 0 to 20 in steps of 0.001)
on the training dataset. The threshold that yields the great-
est accuracy is selected to compute the metrics on the test
set of similar and dissimilar image pairs.

4.4.2 Metrics to Evaluate Attribute Prediction

To evaluate the performance of the classification network
on the binary label attribute prediction task, we compute
the precision, recall, hamming score, F1 score, and top-k
recall.

A forward pass of the classification network is ran to
generate a 123 dimensional vectors that represents the un-
normalized score of presence of each binary attribute in the
image. To generate the prediction, the logistic function is
applied to each score vector and thresholded at 0.6. (The
selection of 0.6 is entirely arbitrary.) The precision, recall,
F1 score, and hamming score of the correct predictions is
computed with respect to the number of correct binary at-
tribute predictions made.
HammingScore = |true positives|

|true positives|+|false negatives|+|false positives|
The top-k recall is inspired by [17]. The top-k recall

for an image is calculated by ranking the 123 unnormal-
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Loss Type Acc TPR FPR VAL
FAR
Triplet 0.68 0.67 0.31 0.01
Ranking 0.5 0 0 0

Table 3: Evaluating the quality of the learned embeddings
for the network trained with triplet loss and ranking loss.
Acc = Accuracy, TPR = True Positive Rate, FPR = False
Positive Rate, VAL = Validation Rate, FAR = False Accept
Rate.

Loss Type Precision Recall F1 Hamming Score
Triplet 0.079 0.142 0.098 0.054
Ranking 0.38 0.053 0.092 0.053

Table 4: Comparison of triplet loss vs ranking loss for the
task of attribute prediction.

Loss Type 1 2 3 4 5
Triplet 0.13 0.105 0.107 0.078 0.084
Ranking 0.51 0.39 0.327 0.305 0.276

Table 5: Comparison of triplet loss vs ranking loss evalu-
ated on attribute prediction using top-k recall.

ized attribute prediction scores and determining how many
attributes have been matched in the top-k list.

4.5. Comparing Triplet Loss vs. Ranking Loss

We compare the performance of Triplet loss vs. Ranking
loss when jointly training the network with the classification
loss.

The triplet loss demonstrates significantly better scores
than the ranking loss with respect to the metrics that eval-
uate the quality of the learned embeddings. This could be
due to the fact that the triplet loss directly optimizes the
separation of similar and dissimilar images with respect to
squared L2 distance whereas the ranking loss operates with
respect to normalized distances and only encourages the rel-
ative ranking the image pairs – namely that the distance be-
tween the anchor and similar image is less than the distance
between the anchor and dissimilar image.

We report the performance of either network evaluated
on attribute prediction 45. We observe drastic differences in
the attribute prediction performance when using each loss
even though the classification loss remains constant. The
likely reason for why we observe this result is that the net-
work trained with Ranking loss was allowed to train for
more iterations and as a result the classification loss was
able to slowly converge. The convergence for the classifica-
tion loss was rather long since the classification loss weight
parameter was set to 0.1.

We also performed a few experiments tuning the classi-

Figure 3: An exemplary image from each of the five classes
in the Hipster Wars dataset.

Network Accuracy Precision Recall F1
Fashion-Triplet 0.34 0.30 0.34 0.29
Fashion-Ranking 0.41 0.36 0.41 0.37
VGG16 0.62 0.63 0.62 0.62

Table 6: Comparison of the quality of features extracted
from Fashion network vs. VGG network for task of fashion
classification.

fication loss weight.

4.6. Evaluating on the Hipster Wars dataset

In order to evaluate the quality of the learned representa-
tion we experiment with training the network on the Fash-
ion144k dataset, fixing the weights, and using the network
as a feature extractor for the task of fashion style classifica-
tion on the Hipster Wars dataset. This task involves classi-
fying an image as one of five classes : Hipster, Bohemian,
Goth, Preppy, or Pinup. An example image is shown here
3.

We compare the performance of our network, which we
refer to as FashionNet, to that of pretrained VGG16 net-
work.

After extracting the feature vector, we use 5-fold cross
validation with a 9:1 train-test split to train a SVM with
a variety of hyperparamters. The SVM uses L2 regu-
lariztion and L2 loss. We consider linear kernel with
C ∈ [1, 10, 100, 1000] and the RBF kernel with C ∈
[1, 10, 100, 1000] and γ ∈ [1e− 2, 1e− 3, 1e− 4, 1e− 5].

Notice that the results in the table 6 indicates that the
VGG network has learned better representations than the
Fashion Networks. Although this is discouraging, this is
likely not the most accurate result because at the time that
this experiment was performed the Fashion networked were
experiencing a bug with their training. I could not include
the results from the most recent networks that were trained
because of a issue loading the pretrained weights in Ten-
sorflow. As a next step I would like to follow up on this
result.

6



4.7. t-SNE evaluation

We use t-SNE to visualize the embedding learned by the
Fashion Network. We ran ran t-SNE on images sampled
from the Fashion144k dataset. The visualization is dis-
played below 4.

Figure 4: A t-sne embedding of images sampled from the
Fashion 144k dataset.

It is difficult to evaluate the t-SNE embedding to deter-
mine what structure the representation has learned. This
is likely due to the fact that at the time of constructing this
t-SNE plot, the network was experiencing an bug with train-
ing. I unfortunately could not visualize t-SNE with one of
the more recent networks that were trained because of a is-
sue loading the pretrained weights in Tensorflow.

5. Conclusion

In this paper we presented a system that directly learns a
mapping from fashion photographs taken in real-world en-
vironments to a compact Euclidian space where distances
correspond to a measure of clothing style similarity. We
demonstrated that the embeddings encode information of
similarity with respect to the clothing attributes. We also at-
tempted to demonstrate that the representations are generic
and can be used as a pre-trained feature for other related
tasks such as style classification. Unfortunately due to tech-
nical challenges with Tensorflow, not all of the most recent
results were included. Future work will involve improving
these results and visualizations.
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