Interactive Image Segmentation with GrabCut

Bryan Anenberg
Stanford University

anenberg@stanford.edu

Abstract

We implement GrabCut and experiment with three ex-
tensions. We try varying the number of GMM components
used, reinitializing GMM components after a few iterations,
and restricting the background Gaussian Mixture Model to
pixels to be within the bounding box.

1. Introduction

The goal of foreground-background segmentation is to
divide the pixels of an image into exactly two sections, one
foreground and one background. Foreground-background
segmentation is a challenging task, and has many applica-
tions in object recognition and classification [3].

A successful segmentation requires knowledge of both
local features and global features in an image. GrabCut,
which we will discuss in more detail in the following sec-
tion, minimizes an energy equation that balances both local
and global relationships between pixels [9]]. Since its de-
velopment in 2004, GrabCut has been applied to many dif-
ferent segmentation problems. For example, Lempitsky et
al of Microsoft Research modified GrabCut to favor fore-
ground segmentations that are tight to the given bounding
box [6]. Of course, for many images a bounding box is not
available. However, Guillaumin et al developed a method
that propagates known segmentations across ImageNet to
initialize GrabCut on similar images that have no annotated
bounding box [3]. When no bounding box in a set of im-
ages is available, another option is cosegmentation, which
analyzes similar images together to identify a foreground
segmentation [S].

2. Algorithm
2.1. GrabCut

GrabCut chooses a segmentation by iteratively revising
foreground and background pixel assignments. At the start,
GrabCut initializes a foreground and background model us-
ing the bounding box. Any pixel outside the bounding
box can be confidently assigned to the background. Pix-

Michela Meister
Stanford University

mmeister@stanford.edu

els within the bounding box are initially assigned to fore-
ground. Using these initial assignments, GrabCut then
develops a Gaussian mixture model (GMM) for the fore-
ground and background respectively. Each GMM is made
up of multiple components, which represent clusters of sim-
ilar pixels. GrabCut then defines a distance measure be-
tween each pixel and the foreground and background mod-
els, based on the component most similar to the pixel in
each model. GrabCut also calculates the color distance be-
tween each pixel and its neighbors.

Using these two distance measures, GrabCut models the
entire image as a directed, weighted graph, where each pixel
has an edge to a foreground source node, a background sink
node, and each of its eight neighbors. The distance mea-
sures (D) to the foreground and background models weight
the edges from a pixel to the source and sink nodes, re-
spectively. These edges represent the cost of assigning an
individual pixel to the foreground or background.

Ule, k,0,2) = ZD(an, kn,0,2n)

D(an, kn,0,2z,) = —logm(an, kn) +
Llogdet X(an, kn) +3 [20 — ptlan, k)] S(anka) ™" [2n

Edges from a pixel to its neighbors have weights that
consider both the color distance between the two pixels and
the landscape of the pixel neighborhood. These pairwise
edges (V') represent the cost of assigning neighboring pix-
els to different segments and are engineered with 3 such
that neighboring pixels are only given opposite assignments
when there is a significant change in color over multiple
pixels.

V(a,z) =7 Z [Oé A= am] exp _BHZm _ZTLHQ

(m,n)eC

8= (2m = 2))

This helps encourage smooth segmentations - one outlier
pixel in an otherwise homogenous segment will have the
same assignment as its neighbors even if it is a very different
color.

GrabCut then calculates the minimum cut of the con-
structed graph to find the minimum-cost segmentation (F)
and re-assigns pixels to the foreground and background ac-

- N(O‘nv kn)]

cordingly. The entire process then repeats until convergence
by relearning the GMM models and constructing another
graph, etc [9].

E(o,k,0,2) =U(a, k,0,2) + V(a, 2)

2.2. Our Algorithm: Standard Implementation

Our standard GrabCut implementation uses five compo-
nents for the GMMs and an 8-connected graph, just as in
the original implementation [9]. We initialize the GMMs
on the first iteration using kmeans. The original only cal-
culates assignments for pixels that were in the foreground
on the previous iteration. We re-calculate foreground and
background GMM assignments for every pixel on each it-
eration in order to update the GMM parameters. We artifi-
cially keep pixels previously assigned to background in the
background during reassignment by setting high weights to
the edges that connect these pixels to the foreground source.

2.3. Our Algorithm: Extensions

Motivated by the subpar segmentation of the banana in
figures , we experiment with using different numbers
of GMM components. Our hypothesis is that a system with
five GMM components overrepresents the color distribution
of the foreground, resulting in foreground GMM compo-
nents with color means similar to the background. As a
result, pixels that should be assigned to background are in-
stead assigned to foreground.

In addition, our original segmentation of the elephant in
figure [] inspires us to reset the number of GMM compo-
nents after a few iterations. Each trial begins with a constant
5 GMM components, however after 3-4 iterations we reset
the number of components and reinitialize using kmeans.
Our hypothesis here is that the foreground is mostly stabi-
lized after a few iterations and so reducing the number of
GMM components at this point could help shed some re-
maining background material from the foreground segmen-
tation.

In our final extension we experiment with a different
background model. Instead of generating the background
GMM using all the pixels assigned to the background, we
only use the pixels assigned to background that fall within
the bounding box (as introduced in [2]). Our idea is that
this might produce better segmentations, because the back-
ground GMM will better represent the local variation in
background surrounding the foreground object (figure [3).
To test this technique we also reinitialize the GMM compo-
nents after 4 iterations, as in the preceding extension.

3. Code
A README is included in the code. File Overview:

1. grab_cut_fen.py

Implementation of GrabCut with various options to
implement the 3 extensions. [75 4511} 8]

2. grab_cut_script.py The script used to compute all of the
segmentations featured in the paper.

3. simple_script.py Simple script to run the GrabCut seg-
mentation with the experimentally discovered best
settings. e.g, initialize foreground and background
GMMs with 5 components, restrict the background
GMM to pixels within the original bounding box, and
reduce the number of GMM componenets to 3 after the
4th iteration of energy minimization.

4. Results
4.1. Standard Implementation

Our standard implementation segments the dataset with
95.44% accuracy and 84.12% Jaccard similarity. As seen
in figure [2| some images segment better than others. The
llama, teddy bear, and banana on apple background images
(figure[T) segment well, whereas the scissors and banana on
yellow background segment poorly. These two cases are ex-
amples of overfitting, where the background sections above
the banana and inside the thumbholes of the scissors are
assigned to foreground since they identify with one of the
foreground GMM components. The elephant image (figure
[I) segments moderately well, although the section between
the elephants trunk and legs is mislabeled as foreground.

4.2. Extensions
4.2.1 Vary the number of GMM components

Varying the number of GMM components used (table
improves segmentations for some images, as seen in figure
[l Specifically, the banana on yellow background segments
very well with one to three GMM components, after which
there is a steep drop in Jaccard similarity. The cross and
scissors also have their best segmentations with one GMM
component. We see in Figure 4 that the segmentation of the
scissors with only one GMM component no longer over-
fits the area inside the thumbholes, and these sections are
correctly assigned to background. Segmentations of both
the cross and the scissors degrade as the number of GMM
components increases, with the cross classified entirely as
background when eight components are used. (This case
occurs since at initialization the foreground and background
GMMs are likely very similar and by chance the pixels in
the true foreground as assigned to the background.) The
grave segmentation, however, improves as the number of
GMM components increases, likely because its background
is so varied. From these results we can see that images
with fairly constant backgrounds segment better with fewer
GMM components, whereas images with more variation in

| K | Accuracy [Jaccard
1 97.01 82.76
2 96.29 84.34
3 96.41 85.36
4 95.56 84.64
5 95.44 84.12
6 95.54 84.52
7 95.67 84.16
8 94.60 82.22
9 95.47 83.74
10 95.47 83.72

Table 1: Average Accuracy and Jaccard Similarity as a

function of number of Gaussian components.

the background, such as the grave, segment better with more

GMM components.

Jaccard Similarity vs. Number of GMM components

seen in figure[5] For example, the cross segmentation does
not experience such a drastic dip in Jaccard similarity at 8
components and the grave at 1 component. The elephant
segments well with 6 components after reinitialization, and
we see in figure [§] that the segmentation no longer misla-
bels the sections of background next to the elephant as fore-
ground. This is likely because the foreground is mostly
localized after a few iterations, which means that, at this
point, we only need a few components to model it well, and
so including more components in our GMM only leads to
overfitting.

Reinitialize to K GMMs after 3 iterations

-
=)

=
o

=
@

=
jy

=
=
=
© 06
E
B 05 \ — [—
E — ‘bool o -
T 0.4
Y — bananal
B s cross
—— scissors
02 fullmoon
01 grave
— elefant

0.0

2 3 4 5 6 7 8 9 10
Number of GMM components

10
] e v
o \ \
= \ \
S 06 \ \
E \ \ _ |
& 05 \/ _ — —
2 — bool — \ /
© 04
& **||-—Tpananat | v]
B sl — cross \ Ff
— scissors \ /
221 — fullmoon \ j’
\ /
. grave \ /
— elefant \ /
|
00 v

1 2 3 4 5 6 7 8 9 10
Number of GMM components

Figure 3: This figure displays the Jaccard Similarity as

a function of the number of foreground and background

GMM componenets. Jaccard similarity is the intersection

over the union of the predicted foreground region with the

ground truth.

x

Figure 4: bananal and scissors.

4.2.2 Reinitialize GMMs after 3rd iteration

Reinitializing the number of GMM components after the
third iteration (table [2) tends to stabilize segmentations as

Figure 5: This figure displays the Jaccard Similarity as a
function of the the number of GMM components after reini-
tialization on the 3rd iteration. The performance is similar
to that of figure 3, but much more stable. For example, the
initial 5 component GMM yields a rough segmentation of
the grave. However, by reinitialzing to 1 component, the
holes at the top of the grave are assigned to background
since the majority of the foreground contains the gray grave
color.

Figure 6: Left: original elefant image. Middle: Segmenta-
tion using standard GrabCut. Right: Segmentation by reini-
tialzing GMM componenets after 3rd iteration.

| K | Accuracy [Jaccard
T | 9727 | 8548
2 [9649 | 8597
3 96.72 86.70
4 95.68 84.72
5 95.68 84.79
6 95.82 85.12
7 95.50 84.15
8 95.47 84.11
9 95.82 84.87
10 95.50 83.61

Table 2: Average Accuracy and Jaccard Similarity as a re-
sult of reinitializing after 3 iterations to K Gaussian compo-
nents.

Pﬂackground within Bounding Box, Reinit to K GMMs after 4 iters

\ v -
— ‘bool
— bananal
03l| — cross
scissors
fullmoon
grave
— elefant

04 L

Jaccard Similarity

0.0

1 2 3 4 5 6 7 8 9 10
Number of GMM components

Figure 7: This figure displays the Jaccard Similarity as
a function of the the number of GMM components when
modeling the background only using pixels from within the
original bounding box and reinitializing on the 4rd iteration.
11 iterations are run in total. Notice the improvement in the
fullmoon segmentation.

4.2.3 Constrain background pixels to within original
bounding box

Restricting the background model to only include pixels
within the bounding box (figure[7] [3) works especially well
for the fullmoon image (figure[8) when the number of GMM
components is reset to two or three. This is likely because
the black background is not uniform over the entire image
and has slightly different color in the area bordering the
moon. By only including pixels originally in the bounding
box in our background model, we create a better local model
for the background that borders the moon and therefore can
produce a finer segmentation. While this works well for the
moon, this extension still does not solve the segmentation
for the “bool” image (figure). Unlike the moon, the bool

foreground has very similar color to the background, as the
mans vest is nearly the same color of green as the grass.
Because of this, using a more local background model still
does not help us differentiate between foreground and back-
ground. This extension yields some of the best segmenta-
tions (table[3) and strongest overall result (figure [T0).

Figure 8:

e Top left: original fullmoon image with bounding box.

e Top right: original fullmoon image transformed into
grayscale and then displayed between the intensities
between the range 18 to 23. The majority of the back-
ground pixels have exactly the same value: 19.26. The
background pixels immediately surrounding the full-
moon vary between 18 and 20. The pixels interior to
the fullmoon have values greater than 23.

e Bottom left: The fullmoon segmentation using the
standard GrabCut algorithm.

e Bottom right: The fullmoon segmented by constrain-
ing the background to within the bounding box.

5. Conclusion

From our three experiments we see that the number of
GMM components used can have a large effect on the fi-
nal segmentation for certain images. Moreover, reinitializ-
ing GMM components after a few iterations can stabilize
these segmentations. Finally, we achieve our best result of
96.94% accuracy and 87.71% Jaccard similarity when we
constrain the background model to only the pixels within
the bounding box on all but the initial iteration. This ap-
proach allows the model to better represent the local color
distribution around the object. Nevertheless, some images
still may not segment well, because of similarities between

| K | Accuracy [Jaccard
1 97.11 84.61
2 96.77 87.53
3 96.94 87.71
4 95.93 85.53
5 95.87 85.16
6 95.74 84.57
7 95.88 84.95
8 95.87 84.88
9 95.97 85.05
10 95.71 84.74

Table 3: Average Accuracy and Jaccard Similarity after
sampling background from within bounding box and still
reinitializing to K Gaussian components.

Figure 9: Left: original "bool” image. Notice the grass is
a similar color to the vest of the man. Middle: original
”bool” image as displayed using grayscale intensity. Right:
”bool” segmented by constraining the background to within
the bounding box.

the foreground and background. In these cases, we could
further improve our segmentations by including user inter-
action.

References

[1] Y. Boykov and V. Kolmogorov. An experimental com-
parison of min-cut/max- flow algorithms for energy
minimization in vision. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(9):1124—-1137,
Sept 2004.

[2] D. Chen, B. Chen, G. Mamic, C. Fookes, and S. Srid-
haran. Improved grabcut segmentation via gmm opti-
misation. In Digital Image Computing: Techniques and
Applications (DICTA), 2008, pages 3945, Dec 2008.

[3] Matthieu Guillaumin, Daniel Kttel, and Vittorio Fer-
rari. Imagenet auto-annotation with segmentation prop-

agation. International Journal of Computer Vision,
110(3):328-348, 2014.

[4] J. D. Hunter. Matplotlib: A 2d graphics environ-

[6]

ment. Computing In Science & Engineering, 9(3):90—
95, 2007.

A. Joulin, F. Bach, and J. Ponce. Discriminative clus-
tering for image co-segmentation. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 1943—-1950, June 2010.

Victor Lempitsky, Pushmeet Kohli, Carsten Rother, and
Toby Sharp. Image segmentation with a bounding box
prior. In ICCV, number MSR-TR-2009-85, 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825-2830, 2011.

pmneila. Pymaxflow: Python library for creating flow
networks and computing the maxflow/mincut. GitHub
repository, 2015.

Carsten Rother, Vladimir Kolmogorov, and Andrew
Blake. grabcut”: Interactive foreground extraction us-
ing iterated graph cuts. ACM Trans. Graph., 23(3):309—
314, August 2004.

Figure 1: Top row are the ground truth original images, bottom row are the segmentations using the standard GrabCut
algorithm (5 component GMMs). Images towards the left segment well, whereas images towards the right segment poorly.

Accuracy and Jaccard Similiarnity by image

[accuracy — m — = = M

095 || jaccard o= S0 R S Y Y I Y Y I O == o O

bool
bananal
cross
tennis
scissors
person6
fullmoon
person5
bush
persond
elefant
person?
memorial
sheep
ceramic
banana3
llama
book
grave
banana2
person8
person3
person2

images

Figure 2: Accuracy and Jaccard similarity across all images for the standard GrabCut
Average Accuracy: 95.44% Average Jaccard Similarity: 84.12%

teddy
doll
personl
flower
music
stone2
stonel

algorithm (5 component GMMs).

Accuracy and Jaccard Similiarnity by image

[accuracy

[jaccar

045

090
085
080
075
070
065
060
055
050
045
040
03s

Tauo0ls
Z3U01s
1snw
Tuosiad
Jamoy
Jlwelad
liop
zuosiad
anelb
Appay
uoowny
Teueueq
zeueueq
jooq
guosiad
deaays
geueueq
cuosiad
uejepR
ewe||

fuosiad

|ellowsw

usnq
51055125
puosiad
guosiad
guosiad
sluua)
ss0.0

looq

images

87.711%

imilarity:

96.94% Jaccard s

. Average accuracy:

ings

Best setti

Figure 10

